
Let’s Make Libraries!

Forging a common path through the glorious forkiness of Pd

Hans-Christoph Steiner
Interactive Telecommunications Program

New York University

hans@at.or.at

”Namespaces are one honking great idea – let’s do more
of those!” – The Zen of Python1

ABSTRACT
Pd is more of an common set of concepts rather than a sin-
gle software package. There are many branches, forks and
packages of Pd, and Pd itself began life as a sort of fork
from IRCAM’s Max. Rather than viewing this as a prob-
lem, it is instead part of the strength of the Pd community.
In order to support this nature, a common library format is
needed so that code can be reused and shared between all of
these versions. This paper reviews how other programming
environments handle the same set of problems, then sum-
marizes the years of discussion on this topic within the Pd
community, and finally proposes a common library format.

1. INTRODUCTION
Pd has a long history of branches, forks and multiple dis-

tros1, and indeed Pd itself started as a conceptual fork of
Max, which also has a history of forks and branches. Rather
than view this as a weakness, it is instead a strength of the
code and the Pd community. Pd has been developed by
people who use it as a primary tool in their own creations.
When people take ownership of their tools, they want to
tweak and customize them. This is not only a natural im-
pulse, it is a good one: it allows for unfettered creativity
and allows new ideas and ways of working to develop. The
downsides come with incompatibilities and problems manag-
ing the vast array of libraries and objects that are available
for Pd.

While most programming languages are thought of as a
single unified entity, there are nonetheless lessons that the
Pd community can learn from to address the issues sur-
rounding reusing and distributing libraries of code. In par-
ticular, Tcl, Python, and Lua have share some similarities in

1http://www.python.org/dev/peps/pep-0020/
1refers to a distribution of software

Permission to make digital or hard copies of all or part of this work for any
purpose are granted under a Free Art License 1.3: http://artlibre.
org/licence/lal/en/
The Third International Pure Data Convention, São Paolo, Brazil
Copyright 2009 Copyright remains with the author(s).

spirit with Pd, and all have addressed the issues of names-
paces and libraries. The central goal is that a Pd patch
written on one computer with a certain distro should then
work on any distro, as long as it includes the needed li-
braries. Pd can learn from Lua, Python and Tcl to create a
common library format, namespaces, and the basic syntax
for managing them.

2. PROBLEMS

2.1 Multi-object-single-file Name Clashes
Pd has been able to load libraries for a long time, and

there were initially two library formats: multiple object-
classes linked into a single file (multi-object-single-file) or
collections of files where each file represents a single object-
class. These collections of single files could be made up of
both binaries and .pd files. Initially, most libraries of bina-
ries were distributed in this multi-object-single-file format.
The way that Pd is currently implemented, using multi-
object-single-file libraries makes it impossible to use an ob-
jectclass if one with the same name had already been loaded.
This causes problems in situations like Gem’s [scale] vs.
maxlib’s [scale]. Both are using the word ”scale” quite log-
ically and appropriately, but for different functionalities. If
one is loaded before the other, the other is completely un-
usable only using the name [scale]. This was addressed
in Pd-extended by distributing as many libraries as pos-
sible using single-class-single-file collections organized into
libdirs [11]. This allowed objects like maxlib’s [scale] to be
accessed with a namespace prefix, e.g. [maxlib/scale].

2.2 Names and Communication
For many years, it has been suggested that we really

should be solving name clashes by increasing communica-
tion. Increased communication is generally beneficial in a
community, and can be quite useful in solving issues, pro-
vided that the community is not too large to allow for ef-
fective communication and dissemination of ideas. In this
particular set of problems, we should ask people to not use
names that already exist, and with Pdpedia and other tools,
this is easier to do. Also, names should be descriptive and
distinct, and that will also decrease the likelihood of name
clashes.

Increased communication should always be encouraged
when there are issues within a community, but there are
many factors which mean it is not feasible for these issues
to be addressed by communication alone. The first is the
question of how many Pd communities there are. The Pd



lists hosted by IEM2 have long been the central meeting
place of the core developers, but there are many other fo-
rums as well. People in these forums are generating useful
code that is often shared. If people are not part of the IEM
lists, it makes it more difficult to find and communicate with
them. Also, speaking English in the English forums should
not be a requirement for producing reusable libraries.

And lastly, if people do not participate in the main forums
and follow the rules devised there, they might still be pro-
ducing useful code. If they haven’t followed the communi-
cation for avoiding problems, they might have unknowingly
broken these rules. So it would be difficult to use that code
if there was a name clash. If we provide a set of tools that
make it easy to avoid the name clashes and other related is-
sues, then we have a solid foot to stand on when discussion
among developers is not effective. In order for these tools to
gain widespread use, they need to be simple, intuitive, and
well-documented.

2.3 Loading all the libraries
With Pd-extended another approach tried to combine the

ease of a global namespace with a solution to access specific
objectclasses in the case of name collisions. The libraries
were separated into libdirs then all of them were loaded into
the global namespace by default. This provided the ease
of use of the technique of putting all the objectclasses into
a global namespace, but still allowed specific objectclasses
to be loaded with a namespace prefix. This approach also
has proved to have fundamental flaws. For example, take
two libraries, firstlib and secondlib. firstlib is loaded first,
secondlib is loaded second. secondlib has an object called
[foo]. A lot of people use it frequently. It is included in
lots of patches just as [foo] since firstlib is loaded into the
global namespace. The author of firstlib never uses secondlib
or [foo], then creates an object that does something differ-
ent, but calls it [foo]. Since firstlib is already being loaded
first, then firstlib’s new [foo] will override secondlib’s well-
established [foo], and everyone’s patches break. [10]

2.4 When Pd-vanilla gains objectclasses
Every so often, Miller Puckette adds new objectclasses to

Pd-vanilla, for example, [list] in 0.39, [sigmund~] in 0.40,
[pd~], [stdout], and [pow~] in 0.42. This creates a sit-
uation very similar to was is outlined above with the fic-
tional firstlib and secondlib. Recently, the addition of [pow~]
to Pd-vanilla 0.42 in combination with the new objectclass
overriding feature has illustrated the problems with relying
on loading libraries into a global namespace. Pd-extended
has always included cyclone’s [pow~] and loaded it into the
global namespace by default. This [pow~] is a clone of the
one included with Max/MSP, so its outlets are reversed as
compared to the new [pow~] [8] in Pd-vanilla 0.42.

3. LEARNING FROM OTHERS
Pretty much all programming languages have a conven-

tion of putting the library/namespace loading functionality
at the very beginning of the text file. Tcl programs usu-
ally start with package require statements and Python and
Java programs start with import statements at the top of
them. While there isn’t a requirement for package require

or import to be at the top, it is a strong convention to put

2Institute for Electronic Music, Graz, Austria

Figure 1: the complete grammar of Python’s import

those statements there. The logical equivalent in Pd would
be the upper right corner of a patch, since execution in Pd
flows from top to bottom, from right to left. Therefore it
makes sense to place this library loading functionality in the
upper right corner.

3.1 Python
Python is a programming language that has been designed

with usability in mind. Python is also a language that in-
cludes well documented namespaces and library loading ca-
pabilities. Python also has a well used, documented, and
discussed set of procedures for loading libraries based on
the command import. Python’s import provides great flex-
ibility, but is also quite complicated. While the basic com-
mand is just import X, there is also from X import *, from
X import a,b,c, and X = import (’X’). [12] While this
does provide lots of flexibility, it makes the import com-
mand itself quite elaborate in syntactic options, and makes
the code itself perhaps more complicated since individual
functions can be imported into the current namespace. It
also separates the action of making the library available for
use (i.e. math.sin() will run) and loading the library’s func-
tions into the local namespace (i.e. sin() is now mapped
to math.sin()). In Python, the order of execution is top-
to-bottom, then depth first. So if one file imports another
which in turn imports the previous one, aka a ”circular im-
port”, then the results can be unexpected. While it would
be possible to attempt to solve this in the import code it-
self, Python relies on a convention against circular imports
instead.[5]

3.2 Lua
In Lua, namespaces are created using the fundamental

Lua data type: the table. This follows the philosophy of
Lua, where the language should provide only a small set
of ”metamechanisms” which are then used to create things
like namespaces and classes. In both these cases, Lua tables
are used as the fundamental element. Additionally, these
tables are treated as ”first-class values” meaning that they
can be handles like any other chunk of data, i.e. assigned to
variables, passed to functions, etc.[3]

A Lua library is loaded into the global namespace using
require. Once it is loaded, it can be used with its library
prefix, e.g. foo.myfunc(). Many libraries in Lua are loaded
by default, like the math or string libraries, so require is
not needed before loading them. Whether a library is loaded
by default or not is defined by what is compiled into Lua;
it is also possible to compile a library into Lua so that it is
loaded by default. Lua’s packages and files that hold their
code share the same name, which is enforced by convention



Figure 2: an example of Tcl’s package and namespace

only. While this is not technically required, Lua provides
the REQUIREDNAME variable to make the package name au-
tomatically be derived from the file name.

The package name is then used as a prefix to that pack-
age’s functions, so a complex package would have functions
like complex.add(). If you want to use just the function
name without the package name, then you need to declare
a local variable with that name and then assign the func-
tion to it, i.e. local add, i = complex.add, complex.i.
So instead of providing an explicit command for import-
ing function names into the global namespace, Lua expects
people to use the fundamental building blocks like local vari-
ables. [2]

To address problems caused by exporting package names
into the global namespace, Lua’s import was conceived.
import built upon require and written in Lua itself, and
is designed to use all local names for packages and their
functions. Using import requires even the package names to
be loaded into a local variable, so complex.add would not
be available until local complex = import "complex" is
run. [1] This behavior brings Lua closer to Python’s import
and namespaces.

3.3 Tcl
Tcl is not natively an object-oriented language, so the or-

ganization of code is quite different than Lua and Python.
Libraries are sets of procedures (aka procs) which are gath-
ered into packages organized around a similar idea. The
concepts of ”package” and ”namespace” are separate in Tcl,
with separate commands. The package and namespace com-
mands are what Tcl uses for loading libraries and manag-
ing namespaces. [13] Other languages like Java and Python
combine these two functions into a single import command.
While this arrangement provides extraordinary flexibility,
they are very complicated and are difficult for even a moder-
ately skilled Tcl programmer to grasp. Usually the package

and the namespace end up being the same entity, so this
flexibility is not often used. This flexibility also seems to
prevent the development of widely accepted standard id-
ioms for using Tcl namespaces. There are so many ways
to organize the code into libraries that most people end up
using their own style.

One advantage of the Tcl approach to libraries is the rel-
ative simplicity of the arrangement on the file system. A set
of procedures are put into a given namespace and included
in a single file. These files can then be placed into a di-
rectory to be made into a package using pkg mkIndex. The
files included in a package can also be compiled binaries, so
a single structure is used for creating packages whether the
code is Tcl text or a compiled C binary.

Before Tcl namespaces became dominant, the Tcl com-
munity tried to solve the problem of name collisions us-

ing automated social techniques rather than features of the
language itself. The NIST Identifier Collaboration Service
(NICS) was organized as a central registry of names that
was intended to be a central registrar of unique identifiers
using in programming. The Tcl community also used unique
prefixes for all commands in a library as a means for dealing
with name conflicts, [4] a strategy that is used in some Pd
libraries, and a wide array of Max/MSP libraries, including
Jitter. Tcl namespaces have now replaced these techniques
and the NICS has since been largely forgotten. Indeed the
NICS website itself is no longer even running.3

4. A PROPOSED SOLUTION
With the explosion of code generated for Pd in the past

decade, we now also face the same issues that triggered the
introduction of namespaces to Python, Lua, and Tcl. There
is much confusion and hassle created by name conflicts, and
there isn’t a clear technique to handle the conflicts. Also,
there are many different formats for distributing and loading
reusable collections of code, some of which are not compat-
ible which each other.

4.1 Patch-local Namespaces
The core module of programs in Pd is the patch itself, also

known as the canvas when talking about Pd’s implementa-
tion. Pd patches are often used as reusable objects them-
selves. Therefore it makes sense to make the patch represent
the most local level. Next, we need to define namespaces
in terms of Pd: a set of symbols representing objectclasses
which are available to be created as instances when typed
into an object box in a patch canvas. [9] Currently, Pd has
a global namespace and load path, and a load path that is
local to the parent patch and affects any patch that is used
in that parent patch. This load path effectively acts as a
namespace for objects written in Pd since they are never
cached when loaded. For binary objects, the load path only
acts as a load path, and there is currently only the global
namespace for loaded objectclasses.

Having each patch have its own namespace means that a
given patch’s library configuration can be embedded in the
patch, thereby insuring that this patch will find the right
libraries so matter how the parent patch or any other patch
used in a project is setup. To be effective, the namespaces
need to behave the same for all types of objectclasses, from
binaries to abstractions. This means adding a patch-local
namespace for loaded objectclasses that mirrors the patch-
local load path. [7]

The current parent-local based load path is incomplete be-
cause there is no accompanying affect on the cache of loaded
objectclasses. It could stay in place and be flushed out as
another namespace level in between global and patch-local.
This then adds a level of complexity without a clear benefit.
Having just global and patch-local namespaces provides a
lot of flexibility with a very simple and clean interface. The
global settings are controlled via the application preferences
and the patch-local settings are controlled by either [import]
or [declare].

4.1.1 Python’s import except simple
One of Pd’s greatest strengths is its extremely simple syn-

tax. Following that tradition it makes sense to have objects

3http://pitch.nist.gov/nics



related to the patch-local namespace also have an extremely
simple syntax. Following that ideal, it is apparent that
the only thing that people need to do with libraries into
the patch-local namespace is load them. [import firstlib

secondlib] already provides that functionality without any
additional syntax. One additional feature that could be
added to [import] is the ability to load individual object-
classes from a library by directly specifying it, e.g. [import
cyclone/pow~] would load only [pow~] into the patch-local
namespace, but not any other part of cyclone.

Tcl provides separate commands for loading libraries and
registering names in the namespace, and Python provides
detailed ways of loading names into the namespaces. This
level of technical detail is unnecessary for all but the largest
of large projects. Pd is not meant for very large software
projects, while Python is willing to sacrifice some accessibil-
ity in order to allow for projects with very large codebases.
In keeping with the simple nature of Pd, libraries should
be automatically loaded on demand, and only namespaces
should be explicitly manipulated. This means that there
needs to be a separation of the namespace code and the li-
brary loading code. The only thing the user needs to know
is whether the library is listed in an [import] statement in
the current patch. If so, the library is loaded, if not, the
library is not loaded.

4.1.2 a distro method
There are many different distros of Pd, and most of them

have a custom set of objectclasses that are available in the
global namespace. Pd-vanilla has the standard set, with a
few more in the ”extra” folder. Pd-extended has a many
libraries loaded by default in the global namespace. RjDj is
a new distro that also has a custom set of objectclasses in
the global namespace. It is a natural impulse to have a pre-
configured global namespace with Pd since Pd and Max have
generally always had only a single global namespace. This
can cause problems when a patch is created on one distro
yet a different set of objects are available on another dis-
tro. I propose to add a -distro method to the #X declare

functionality in the patch. Each distro of Pd would save this
information into every patch. While this does add a bit of
complexity to handling libraries, it would make starting out
with Pd a much easier experience.

When Pd encountered this distro tag, it would set up the
environment to limit the available libraries to the Pd-vanilla
objects. ”pd-extended” would set up the default libraries
that are loaded in the current Pd-extended. For example,
if you created [pow~] with the ”pd-extended” distro, you’d
get [cyclone/pow~]. Versions could also be included, so with
something like ”vanilla-0.41.4”, then [pow~] would fail to cre-
ate, but with ”vanilla” you’d get the most recent version,
including the new [pow~] introduced in 0.42. [6]

4.2 A Common Library Format
In order for the namespaces to be fully useful, it is neces-

sary to organize all of the code into distinct libraries, since
the library is the core unit of organizing namespaces. The
library format should be simple and common across all im-
plementation methods. So objectclasses implemented in C,
Pd, Lua, etc should all be able to be included in a single
library. This also means that the core of Pd should include
as few objectclasses as possible, and the ones that are part
of Pd-vanilla should be separated out into its own library.

Help and example patches should also be included in the
same library. Lastly, it should be easy to install and load.

This is mostly possible with the current implementation
of libdirs: C and Pd objectclasses can co-exist, the help
patches can be included as well. For including example
patches, there is a PDDP proposal to use a standard postfix
”-example.pd” mirroring the standard ”-help.pd” for help
patches. One key part that is missing is the ability to sup-
port shared code among objectclasses within a library.

4.2.1 Code shared within a library
Since Pd and its implementation lacks a object-oriented

class hierarchy, it is often useful to have an internal library
of code that is used throughout the implementation of a Pd
library. Gem and PDP are examples of this, where the ob-
jectclasses are broken out into separate .c files, one-per-class,
but then they share a standard chunk of code between them
all. This practice has also proven useful Lua and Tcl im-
plementations of Pd libraries. A good library format should
then support this practice.

In this proposal, this shared implementation code is han-
dled by a shared library included in the library itself. It
has a standardized name so that the loader knows which
file to load. When the library is loaded, this shared imple-
mentation library is loaded first before any of the individ-
ual object classes. Then when each objectclass is loaded
from its individual file, the shared code is already available.
The standard name proposed here is the filename prefix lib

along with the appropriate file extension for that file on the
given operating system. For binaries, that would be .so

for GNU/Linux, .dylib for Mac OS X, and .dll for Win-
dows. For example, Gem would then include a libgem.so on
GNU/Linux, and a library written in Lua called foo would
include a libfoo.lua on all platforms.

Also, to represent Pd’s split between the pd and pd-gui

processes, there should be a separate library prefix for GUI
related code. For example, tkwidgets would include libguitkwidgets.tcl.

4.3 Search order is also important
In an effort to make the library format as simple as possi-

ble, it is also necessary to consider the order that the library
paths are searched for a given name. Currently, Pd searches
each possible name through all of the paths before it tries
the next type. This means it is not possible to use the name
that binary object has if that binary is included anywhere in
the search path. The binary always takes precedence, even
if someone sticks a Pd patch with that name in the same
folder as the project (e.g. ".") While is it a good idea to
avoid name clashes, it is confusing if you create a patch with
a name, and then something else is loaded from the path.
With more and more Pd libraries being written in Pd (e.g.
abstractions), Lua, and other languages, we should consider
treating all of these implementation methods as equals.

5. GETTING IT DONE
The ideas presented in this paper have been debated for

many years now, and some of them have been implemented
and tested. The next step is to more fully implement names-
paces and a common library format and test them in real
world conditions. There are three parts to this puzzle: a
common library format, namespace support, and search or-
der. They can be implemented and tested individually, and
I plan on starting with the common library format and



namespace support. The ideas for the search path and #X

declare -distro are more raw, so they should be discussed
and tested more before committing to them.

6. ACKNOWLEDGMENTS
It is important to note that while I am the sole author

of this paper, I do not make a claim to the ideas outlined
here. This solution is built upon the ideas and work of many
people such as IOhannes m. zmoelnig, Frank Barknecht,
Miller Puckette, Roman Haefeli, pdmtl, Luke Iannini, Mar-
ius Schebella, and many long discussions on the mailing lists,
IRC, and in person. This paper is the end result of my cat-
aloging of the results of these discussions. I am sure I have
left out other contributors, please accept my apology in ad-
vance.

7. REFERENCES
[1] W. Couwenberg. Technical note 11: Require revisited:

Import. Technical report, Lua.org, February 2003.

[2] R. Ierusalimschy. Technical note 7: Modules and
packages. Technical report, Lua.org, August 2002.

[3] R. Ierusalimschy. Programming in lua.
http://www.lua.org/pil/, 2004.

[4] D. Libes. Managing Tcl’s namespaces collaboratively.
In Proceedings of the 5th conference on Annual Tcl/Tk
Workshop, volume 5. USENIX Association, 1997.

[5] F. Lundh. Importing python modules.
http://effbot.org/zone/import-confusion.htm,
2001.

[6] pd-dev. [declare -distro vanilla].
http://lists.puredata.info/pipermail/pd-dev/

2009-03/013165.html, March 2009.

[7] pd-list. Abstractions search path hirarchy.
http://lists.puredata.info/pipermail/pd-list/

2008-06/063294.html, June 2008.

[8] pd-list. Cyclone in vanilla? http://lists.puredata.

info/pipermail/pd-list/2008-04/061603.html,
April 2008.

[9] pd-list. declare [loooooooooooong].
http://lists.puredata.info/pipermail/pd-list/

2008-07/064267.html, July 2008.

[10] pd-list. pd-ext paths, libs and help. http://www.
mail-archive.com/pd-list@iem.at/msg16238.html,
March 2008.

[11] H.-C. Steiner. libdir - a new format for pd libraries.
http://puredata.info/docs/developer/Libdir,
2007.

[12] G. van Rossum. Python reference manual.
http://www.python.org/doc/2.5.2/ref/, February
2008.

[13] B. Welch. Practical Programming in Tcl and Tk.
Prentice Hall, 1997.


