
 The [hid] Toolkit for Pd
Hans-Christoph Steiner

Interactive Telecommunications Program. Fall 2004 1

The [hid] Toolkit for Pd

Hans-Christoph Steiner

Interactive Telecommunications Program, New York University

Masters Thesis

 The [hid] Toolkit for Pd
Hans-Christoph Steiner

Interactive Telecommunications Program. Fall 2004 2

Table of Contents

Abstract 3
Introduction 4
Concept 7
Project Rationale 16
Background and Context 17
Prototype Design 23
Implementation of Prototype 26
User Testing 27
Conclusion 29
Future Work 29
Appendices 32
Bibliography 35

 The [hid] Toolkit for Pd
Hans-Christoph Steiner

Interactive Telecommunications Program. Fall 2004 3

1. Abstract

The [hid] toolkit is a set of Pd objects for designing instruments to harness the
real-time interaction made possible by contemporary computer music
performance environments. This interaction has been too frequently tied to the
keyboard-mouse-monitor model, narrowly constraining the range of possible
gestures the performer can use. A multitude of gestural input devices are readily
available, making it much easier utilize a broad range of gestures. Consumer
Human Interface Devices (HIDs) such as joysticks, tablets, and mice are cheap,
and some can be quite good musical controllers, including some that can provide
non-auditory feedback. The [hid] toolkit provides objects for using the data from
these devices and controlling the feedback, as well as objects for mapping the
data from these devices to the desired output. Many musicians are using and
creating gestural instruments of their own, but the creators rarely develop
virtuosity, and these instruments rarely gain wide acceptance due to the expense
and skill level needed to build them; this prevents the formation of a body of
technique for these new instruments. The [hid] toolkit is built in Pd, which
provides an ideal platform for this work, combining sound and visual synthesis
and control with easy access to many external devices for interfacing with
humans. Pd is a high level programming language, which is relatively easy for
novices without major limitations for advanced users. Using consumer HIDs
allows musicians to build a shared body of technique, much like video game
players have developed; the [hid] toolkit enables sharing of instrument patches.
In combination, designers of new interfaces for musical expression can design
their own instruments while building upon existing skills.

 The [hid] Toolkit for Pd
Hans-Christoph Steiner

Interactive Telecommunications Program. Fall 2004 4

2. Introduction

"Since the first modular synthesizers, it became possible (for the first time in history) to
separate the interface from the actual sound source. It makes sense to try to design new
interfaces, new instruments, unbounded by the sound source." [1] - Bert Bongers

With the power that even a cheap laptop can provide, the computer has gained
widespread acceptance as musical tool. Composers have been creating music
using computers for more than 40 years now, and even music that is played on
all analog instruments is generally mixed on computers when recorded. More
and more musicians are using computer-based instruments for live performance,
to the extent where you can see live computer music in just about any major city
in the world. There is a wide range of software available for live computer music
performance, such as Reaktor [2], Ableton Live [3], SuperCollider [4], Max/MSP
[5], and Pd [6] designed expressly for this purpose. Though these tools can
provide an engaging performance environment, the live performance leaves
something to be desired. The audience may be unable to tell whether the
performer is actually controlling the music in real time, or just clicking a start
button and reading their email. Such performance lacks physicality in the
interaction and is quite limited in the range of possible gestures.

Most computer musicians are bound to the standard keyboard/mouse/monitor
interaction model. To provide an engaging performance, musicians need to
move beyond that interaction model. The human body is capable of a great
range of gestures, large and small. Human gestures give off information in a
manner similar to language. There are many cultural and some universal human
gestures that are well established and easily understood. Music is about
expressing certain kinds of ideas. Having the ability to use a broader range of
gesture in performance means the performer has broader range of possible
expression. Computer musicians should not be limited to the small set of
gestures that normal computer use encompasses. In order to physically interact
with the computer, input devices are needed. Many of these software
environments are already capable of using data from Human Interface Devices
(HIDs) such as joysticks, drawing tablets, gamepads, and mice.

Performers of live computer music generally stare at the screen intently while
performing. The screen alienates the performer from the audience. What the
performer is staring at is obviously important (judging by the intensity of the
stare); however the details of what the performer is looking at is almost always
completely out of view for the audience. This is in stark contrast to traditional
musical instruments, where the instrument is in generally in plain view of the
audience. Additionally, the audience is at least somewhat familiar with the
mechanisms of the instrument being played. There is potential for using
consumer HIDs can alleviate this alienation by allowing the performer to step
away from the computer screen. HIDs such as joysticks are objects familiar to

 The [hid] Toolkit for Pd
Hans-Christoph Steiner

Interactive Telecommunications Program. Fall 2004 5

those attending computer music concerts. Using HIDs in performance therefore
has the potential for making the experience much more understandable to the
audience. The performer can come out from behind the computer screen,
bringing back a closer connection between audience and performer.

Another element that is missing from the keyboard/mouse/monitor interaction is
haptic feedback. "Haptic" is defined as relating to the sense of touch at the skin
level and the sense of forces to the muscles and joints. Traditional instruments
provide haptic feedback because the interface is producing the sound itself, so
the vibrations can be directly felt. Practiced musicians rely heavily on this
feedback, often "feeling" mistakes and correcting before hearing them.
Computer music performers are obviously using non-auditory feedback during
performance, the intensity of their stare at the computer screen is a measure of
this. Providing haptic feedback enables the performer to step away from the
computer screen and engage more with the audience.

Audio synthesis has freed instrument design from the constraints of the physical
method of generating sound, thus desired interface can be mapped to any given
synthesis algorithm. For example, the guitar's strings are both the interface and
the sound generator, while a MIDI device can control any given synthesizer. This
flexibility allows musical instrument designers to choose their physical interface
without the constraints of the method of sound generation. Consequently, a
multitude of means of translating gestural input from the human body are readily
available. By combining such gestural devices with multimedia software, a broad
range of people can now make their own computer-based gestural instruments.
A new model of instrument design is emerging built upon this idea of flexible
interfaces. Instrument designers are shifting from devices that are designed for a
broad user base, to general building blocks that allow the individual musician to
create their own instrument tailored to their performance goals.

Pd [6], also known as Pure Data, is a graphical programming environment for
working with MIDI, sound, video, graphics, or anything that can be controlled by
computer. It is a real-time system, designed for interactive processing. It
provides a fertile platform for designing new instruments, providing a high level,
rapid programming environment that is accessible to a wide range of people with
varying backgrounds. It is a unified platform for a broad range of activities,
combining realtime audio, video synthesis and manipulation, physical modeling.
More options exist for data input and output including MIDI, HIDs, and general
serial communications. Because Pd is free software that runs on most operating
systems, musicians with even very limited budgets can build their own computer
music instruments. Up until recently, computer music has been out of reach to
all but a select few. It is now possible to build an instrument using Pd that costs
less than most traditional musical instruments, including the cost of the computer.

The main objective of the thesis is to provide an coherent environment for
performers to create instruments using gestural interfaces. The [hid] toolkit is a

 The [hid] Toolkit for Pd
Hans-Christoph Steiner

Interactive Telecommunications Program. Fall 2004 6

toolkit for creating instruments using HIDs (Human Interface Devices). The [hid]
toolkit provides high-level objects for accessing the data from various HIDs and
low-level objects for getting the data directly from the HIDs. It also includes
objects for mapping that data to whatever output the user wants to control, and
controlling haptic feedback. It is built to an integral part of Pd, and most of the
[hid] toolkit objects are written in Pd. For these reasons, Pd and the [hid] toolkit
are an ideal platform for designing computer-based gestural instruments.

 The [hid] Toolkit for Pd
Hans-Christoph Steiner

Interactive Telecommunications Program. Fall 2004 7

3. Concept Overview

The [hid] toolkit is a set of Pd objects for using a wide variety of HIDs (Human
Interface Devices) to build computer music instruments. The aim is to have a
standardized and coherent set of objects that enable rapid prototyping of
instrument design ideas. Also, the coherent, high-level objects should prove
accessible to the novice instrument builder, providing an easy entry point for
such users into an otherwise difficult realm. There are four main areas of
instrument design: input, mapping, output, and feedback. Pd provides a wealth
of options for output, the [hid] toolkit addresses the processes of getting input
data, mapping it to the output, and generating meaningful non-auditory feedback.
In order to get gesture data from the performer, an interface with the human is
needed. This project is focused on physical interfaces as opposed to other
kinds, such as video or motion sens_ors, because they provide more reliable and
methods of capturing gesture data with higher resolution. Also, physical
interfaces allow the possibility of haptic feedback.

Figure 3-1: input, output, mapping, and feedback

Human Interface Devices

When talking about interacting with computers, "HID" has become the standard
term for devices designed to control some aspect of a computer. A wide range of
devices are classified as HIDs, including standard computer devices like mice
and keyboards, as well as gaming devices like joysticks and gamepads, to
devices for more specific needs like drawing tablets. There are a number of high
end devices available as well like the SensAble Phantom 6DOF [47] controller,
costing in the tens of thousands of dollars.

 The [hid] Toolkit for Pd
Hans-Christoph Steiner

Interactive Telecommunications Program. Fall 2004 8

Figure 3-2: SpaceMouse

 The [hid] Toolkit for Pd
Hans-Christoph Steiner

Interactive Telecommunications Program. Fall 2004 9

Figure 3-3: gaming joystick

 The [hid] Toolkit for Pd
Hans-Christoph Steiner

Interactive Telecommunications Program. Fall 2004 10

Figure 3-4: P5 Glove

HIDs usually consist of a number of common elements. They generally offer
multiple axes, or dimensions. These axes can either output an absolute position,
or a relative position (usually the amount of change per refresh cycle). A typical
gaming joystick, for example, has 4 absolute axes: X, Y, handle-twist, and

 The [hid] Toolkit for Pd
Hans-Christoph Steiner

Interactive Telecommunications Program. Fall 2004 11

throttle, while a typical mouse has two relative axes: X and Y. The other major
class of elements is buttons, which almost always have a default state of off, and
can be pressed to output an "on" state. Buttons can be anything from mouse
buttons to joystick triggers to keyboard keys. Another class is pseudo-axes.
These are elements operate like an axis, but are generally implemented using
buttons, so they only output an on or off state. Mouse wheels and joystick hat-
switches are examples of pseudo-axes. They operate like axes, but output only
on or off values depending on direction, because they are implemented with
using buttons.

For this thesis, I chose to focus particularly on consumer level HIDs for a number
of reasons. First and foremost, they are cheap and readily available. While
some off-the-shelf HIDs are not up to the standards needed for musical
performance, in terms of latency and resolution, many consumer HIDs perform
quite well as musical controllers. Devices notable for their performance include
gaming controllers such as gaming mice and joysticks; and graphics tablets.
These types of devices can be used with low latency and very high resolution.
For example, a good USB optical mouse can provide 4000 DPI every 5 ms.
Indeed, many people already have established a high level of skill with these
devices. Gamers are quite skilled at using devices such as joysticks and mice;
graphic designers often are very skilled with drawing tablets such as Wacom
devices.

The [hid] toolkit provides unified and standardized access to HIDs, so one need
not learn how to use a new object for each different HID. Once the user has
learned how to use one HID within Pd, that knowledge will be easily transferrable
to other devices. It is also cross-platform so that instrument designers do not
need to know the details of a given operating system's HID implementation in
order to use HIDs, and the patches will work cross-platform. High-level objects
are provided for commonly used devices. These objects are designed to provide
the base set of what is normally expected from that device. The [mouse] object,
for example, provides data for an X axis, Y axis, a mouse wheel, and buttons.
These objects always output data in the same range, between 0 and 1,
automatically adjusting to a given device's native range. Pd's native numeric
data type is floating point, so such data fits in better in that environment than
MIDI's 7-bit integers. This base set allows for rapid prototyping and greater
accessibility for beginners. For those who want to learn the details of various
HID implementations, low level objects exist ([hid], [linuxhid], [darwinhid], and
soon [windowshid]).

For this thesis, a coherent, usable scheme was designed to represent the range
of possible event data. The specifications for USB HID[7], Mac OS X HID Manager
[8], and Microsoft DirectInput [9] are all arcane and overcomplicated for most
users. The Linux input event system [10] is cleanly organized, and the [hid]
scheme was built using it as a model. In order to make for more readable
patches and enable rapid prototypes, the [hid] toolkit uses symbolic names like

 The [hid] Toolkit for Pd
Hans-Christoph Steiner

Interactive Telecommunications Program. Fall 2004 12

"rel_x" and "btn_0" rather than numeric values to represent the possible device
elements.

Mapping

In the same way digital synthesis has freed instrument design from the
constraints of the interface generating the sound, instrument designers are also
free to design the mapping between the interface and the synthesis, separately
from the design of the input and the output. Thus any arbitrary interface can be
mapped to any given synthesis algorithm; indeed the mapping can also be
designed to suit the goals of the designer[11]. HIDs almost always produce
linear data but mappings in expressive instruments are rarely linear. More
complex mappings usually create more engaging instruments. There are many
common ideas that are frequency used when designing a mapping. For
example, since humans perceive loudness and pitch on a logarithmic scale, the
amplitude and frequency control data are generally mapped to a logarithmic
scale as well. For a more complicated mapping of loudness, Fletcher-Munson
equal-loudness contours could be used.

The [hid] toolkit provides a number of mapping objects for commonly used
operations. These objects expect input and output data in the range of 0-1, in
the same format as the input objects. Having a consistent input and output range
makes it possible to easily chain [hid] objects without thinking about scaling the
data for each operation. The range of 0-1 is the standard range for representing
amplitude and stereo position for many computer music environments, including
Pd. It is also very easy to scale 0-1 to other common ranges, like MIDI (0-127).

There are a number of strategies that have been used to derive mappings. The
most straightforward method is looking at controls and parameters to be
controlled. This often leads to direct mappings of controls to parameters, which
can be a limited way of turning gestures into sound. Using the velocity or
acceleration of a given control, for example, can provide for much more
compelling gestural control. Rovan, Wanderley, Dubnov, and Depalle break
down the strategies into three basic categories: one-to-one, one-to-many
(divergent), many-to-one (convergent) [12] According to them, these methods
provide a level of expressivity in the order listed, with many-to-one mappings
creating more expressive instruments while generally making them more difficult
to learn. A classic mapping strategy is creating a multi-dimensional "timbre
space" which the musician navigates [13]. In this method, a few dimensions of
timbre are designed and then mapped out into a dimensional space which the
user can navigate. A. Cont, T. Coduys, and C. Henry present a different
approach to mapping, using neural networks to create mappings that are based
on learning gestures from the user [14]. Their software, written in Pd, makes
designing mappings an iterative process, where the user ranks the desirability of
a given gesture, leading eventually to a chosen array of performance gestures.

 The [hid] Toolkit for Pd
Hans-Christoph Steiner

Interactive Telecommunications Program. Fall 2004 13

Before controller data can be mapped, the output from many devices needs to be
smoothed or otherwise processed. On the most basic level, the range coming
from the input device will have to be scaled to match the parameters being
controlled. This happens automatically in the high level HID objects ([mouse],
[joystick], [tablet], etc.) A number of commonly used curves are also available in
the [hid] toolkit, including [hid_log], [hid_exponent], [hid_square], etc. Data from
high resolution devices such as mice and tablets can be jerky and seemingly
erratic. Numerous methods for smoothing sensor data exist. One technique is to
take a running average of a set of most recent values from the stream is one
technique. By making it a weighted average, you can ameliorate the added
latency caused by the averaging. Another technique converts the stream to an
audio signal and runs that signal through a low pass filter. These two techniques
are represented by [hid_average] and [hid_lowpass] respectively.

Feedback

Computer performers need feedback that is otherwise lacking in the physical
interface. Most computer performances stare intently at the screen while
performing to get visual feedback. In standard computer music performance
environments, the screen is the sole source of feedback besides the audio itself.
The software interface provides visual feedback, usually in a very concrete
manner, by displaying the status of various parameters with virtual knobs, sliders,
or even just numeric values. The overall amplitude is commonly shown as well.
By providing haptic feedback thru the physical interface, for example, this need to
stare at the screen can be alleviated.

Each sense can be thought of as a separate channel for getting data to level of
conscious processing. Each sense has a portion of the brain devoted to
processing that channel's data. If data is not coming in on that channel, the eyes
are closed for example, that portion of the brain is basically dormant and would
not be reassigned to process other types of data. It is possible to utilize these
otherwise unused channels without significantly adding to the cognitive load.
There is, of course, a limit to number of streams of data that can be consciously
processed; it is possible to overload the brain with too many channels of
feedback. So the feedback should be designed with this in mind. If the feedback
is designed so that there are strong correlations to the audio and/or other
feedback channels, those streams will be chunked into one stream to be
consciously processed. This would minimize the additional cognitive load while
providing for a richer interaction.

"[M]uscular feedback can work on time scales far below those possible in
auditory feedback." [15] Adding haptic feedback to an instrument allows the
musician to accurately perform actions that would be left to guesswork if haptic
feedback was not available. Each sense has its strength: the sense of touch has
the shortest possible feedback loop, the vision system processes the most
amount of data in a given moment. The instrument designer should keep this in

 The [hid] Toolkit for Pd
Hans-Christoph Steiner

Interactive Telecommunications Program. Fall 2004 14

mind when designing the feedback offered.

Haptic devices have become readily available and affordable. There are
numerous gaming HIDs, such as joysticks, gamepads, and mice, which can
provide a range of haptic 'effects' from vibrations to forces to friction. Since the
motor control in these haptic controllers has been encapsulated into haptic
'effects', they are generally quite easy to control. There are also high-end 6
Degree-of- Freedom devices such as the SensAble Phantom, which can provide
very detailed haptic feedback in its six degrees of freedom. But the price puts
these devices far out of reach of the vast majority of people.

Since non-auditory feedback can greatly enhance the interaction of human and
computer, such feedback should become a standard part of instrument design.
The [hid] toolkit provides a number of objects for generating haptic 'effects' such
as [hid_ff_periodic] or [hid_ff_spring]. They follow the same data range
conventions as the rest of the input, so the input in expected to be between zero
and one. Therefore, they should easily interoperate with the whole set of
mapping objects.

Enabling Sharing of New Instruments

One common problem with most new interfaces for musical expression is that
they are difficult and/or expensive to build. This greatly hinders the spread of the
instrument unless the designer can convince a manufacturer to build it and the
volume is large enough that it becomes affordable. Many people have started
creating their own instruments using HIDs, but because of technical difficulties,
they are difficult to share with other users. These two ideas were key motivators
in the design of the [hid] toolkit. The common, cross-platform set of objects
eases sharing of Pd patches. Also, using abstracted objects like [joystick] allows
people to use existing Pd patches with devices that differ from the original
designer of the patch. For example, it would not be necessary to have the exact
same make and model of joystick as the Pd patch's designer, your joystick would
just have to have the minimum set of elements needed by that patch.

A common and valid critique of many new interfaces for musical expression is, by
their nature of being unique novel devices, few people know how to play them. If
there are few people who play a given instrument, the ability to develop and
share techniques for playing that instrument is quite limited. The goal of many
designers of new interfaces for musical expression is to design an instrument
that is so compelling that it becomes a common instrument, thereby allowing the
possibility of building a body of shared technique. But it is exceedingly rare for a
new instrument of any kind to catch on in any substantial way. The Theremin is
one of the most successful designs, but it is even still very much a niche
instrument, even though it has been in existance since 1919. Many such
instruments are also expensive and difficult to make, further limiting the potential

 The [hid] Toolkit for Pd
Hans-Christoph Steiner

Interactive Telecommunications Program. Fall 2004 15

body of users.

We can look to the relatively recent phenomenon of "turntablism", or playing the
turntable as an instrument. Turntable and DJ mixer interfaces have been long
standardized, providing a common platform for turntablists. This has helped to
enable the development of a body of turntablist technique, which has become
quite well established over the last 2 or 3 decades. For example, "[t]he first
scratch, normally done in eighth-notes or triplets in time with the music, in called
the baby-scratch." [16] There are even classes in turntablist technique offered in
many cities around the world.

Using consumer HIDs enable the building of a body of shared technique in two_
ways. First, these devices are affordable and easily available where ever
computers are available. Therefore, many users could easily use an instrument
designed by someone else. Second, performers can build upon the existing
body of knowledge that comes from other serious users of these devices. For
example, gamers have developed a body of technique for using mice, joysticks,
keyboards, and other HIDs for manipulating video games. Here is a definition of
a term used by many gamers: "Pawing (verb): the act of lifting a mouse and
returning it to the center of your mouse pad. Useful when trying to make a
sequence of fast mouse movements." [17] Graphic designers also have a
similarly developed body of technique for using graphical tablets. In a more
general way, a number of software packages such as Apple Motion [18], Mozilla
Firefox [19] and Cocoa Gestures [20] support the mapping of gestures to actions
and include a standard set of gestures.

Sometimes previously learned behavior for using various HIDs can be a
hinderance to the development of an expressive interface. For example, while
many mice have very high quality sensors and could be well suited to musical
control, they have a particular set of gestures that are strongly associated with
that device. The mouse sensor is well suited for capturing large gestures, since
there is no limit to the size of the gesture that it can measure since it outputs
relative position information. But the mouse is strongly associated with
manipulating a standard computer interface, which is generally done with small,
discrete gestures. In order to break such habits, the instrument designer could
modify the package of the device to force a different position, or just hold the
mouse in a different style thereby breaking the familiar hand position.

 The [hid] Toolkit for Pd
Hans-Christoph Steiner

Interactive Telecommunications Program. Fall 2004 16

4. Project Rationale

The increasing accessibility of computer music has made live computer music
performance quite widespread with many tools such as Max/MSP or Pd
performance patches designed just for this purpose. Though these tools can
provide an engaging performance environment, the actual performance leaves
something to be desired. The audience may be unable to tell whether the
performer is actually controlling the music in real time, or just clicking a start
button and reading their email. Such performance also lacks the physicality of
the interaction and the accompanying range of gestures. Computer musicians
are just starting to break out of the keyboard-mouse-monitor interaction. Using
the computer for synthesis allows the interface to be tailored to the interaction
without being constrained by how the sound is actually being generated. A
multitude of means of getting physical input from the human body are readily
available. These, in combination with the high level, rapid programming
environment of Pd, allow a broad range of people to make their own computer-
based physical musical instruments.

I chose to build upon Pd for a number of reasons. First, Pd is free software, so
its available for free, and the source is completely open, allowing me to make any
modifications that I need to in this process. Second, Pd runs on most operating
systems, so it has a very broad potential audience. Third, it is a high level
programming environment that is relatively easy for novices to pick up without
serious limitations for experienced users. And last, Pd already is capable of a
very wide variety of tasks, such as sound and video synthesis and manipulation,
control of robotics, and interaction logic.

Pd objects for accessing a number of HIDs already exist. There are a couple
problems with the existing software. They are unorganized and inconsistent,
leaving many HIDs poorly supported or completely unsupported. And most of
the objects were written separately, with their own interface and options. This
means that in order to use different HIDs, the user has to learn a different object
for many different HIDs. Since the basic principles are the same across the
range of HIDs, the interface of objects should be similarly structured. My goal is
to provide access to as many HIDs, including haptic devices, into a unified,
standardized, and coherent approach.

Currently, good documentation for using HIDs with Pd or other softwares in not
available from one source. One needs to search thru software documentation,
various academic papers, and many web sites to gain a good overview of all of
the various HIDs that can be used as musical controllers. Therefore an essential
part of this thesis is unified documentation. It should cover various methods of
getting data from human gestures, including HIDs, video, standard musical
controllers, etc. as well as compare the various methods for their effectiveness in
different situations and capturing different types of human gestures.

 The [hid] Toolkit for Pd
Hans-Christoph Steiner

Interactive Telecommunications Program. Fall 2004 17

5. Background and Context

Humans have been building musical instruments for tens of thousands of years
and music is an essential part of every human culture. And humans everywhere
have continuously experimented with building new interfaces for musical
expression. Musical instruments have kept pace with the technology of the time,
with instrument builders finding ways to utilize new technology of their era. The
twentieth century saw an unrivaled explosion of technological development, so it
only follows that musical instruments would also experience similar development.
Electronics started to be used to synthesize sound. Starting with the Theremin,
instrument designers took the opportunity to try new ideas for the interface, since
it could now be separated from the sound generation.

The 1950's opened the era of computer music. In 1955, Lejaren Hiller and
Leonard Isaacson composed the Illiac String Quartet, the first computer-
generated piece of music. Starting in 1957, Max Mathews and Joan Miller wrote
the Music N family of programming language for synthesizing sound digitally.
Computers were remained expensive for decades after this, so computer music
was limited to academics who could get time on university computer systems. In
1963, Max Mathews declared "There are no theoretical limits to the performance
of the computer as a source of musical sounds." By the late 70's, computer
music centers like CCRMA were building custom computers such as the Samson
Box exclusively for computer synthesis.

Figure 5-1: Computer music circa 1967

By the 80's, the introduction of personal computers made computing much more
accessible. The combination of the Apple Macintosh and programs such as
Laurie Spiegel's Music Mouse [21], and Miller Puckette's Max for Macintosh,

 The [hid] Toolkit for Pd
Hans-Christoph Steiner

Interactive Telecommunications Program. Fall 2004 18

computer music was beginning to be within reach for all those who might be
interested. By now, even a cheap, used laptop has enough processing power for
live performance. There has been a corresponding explosion of "laptop music",
live computer music generally played in dance clubs and similar venues. In the
same vein, many people have begun building physical instruments to control the
sound generating by the computer.

Computers have given composers incredible control over creating sound, but the
process generally leaves a lot to be desired, leading many computer musicians
to make their own physical interfaces to control sound synthesis on the
computer. Michel Waisvisz's The Hands is a great example. Built in the early
eighties, it has been used to control a variety of different sound synthesis
schemes. It is a novel interface that he has played for 20 years, achieving
virtuosity. It allows him to stand on stage with nothing but The Hands and use
gestures large and small to control sound and compose in realtime. Another
example is Max Mathews' Radio Drum. A new user can immediately create
sound with it, yet it is not too limiting for the expert player. It is capable of many
different uses, such as conducting a virtual orchestra or controlling numerous
samples and loops in realtime.

 The [hid] Toolkit for Pd
Hans-Christoph Steiner

Interactive Telecommunications Program. Fall 2004 19

Figure 5-2: Michel Waisvisz and The Hands (with Laurie Anderson)

 The [hid] Toolkit for Pd
Hans-Christoph Steiner

Interactive Telecommunications Program. Fall 2004 20

Figure 5-3: Max Mathews and his Radio Drum

These controllers were custom built and took a high level of expertise to create.
Now there are many affordable, high quality musical controllers and HIDs so that
people can use off-the-shelf devices rather than having to learn engineering and
electronics in order to build their own instrument. There are a number of
example of contemporary musicians who have mastered using a standard HIDs
as a musical controller. Leon Gruenbaum's Samchillian Tip Tip Tip
Cheeepeeeee [22] is built upon a standard ergonomic keyboard; playing with The
Freight Elevator Quartet [23], Luke Dubois plays the Wacom tablet; Loïc Kessous
has built his instrument using a Wacom tablet and a joystick [24]; Gerard Van
Dongen tours with his Saitek force feedback joystick [25]; Nick Fells uses banks
of MIDI sliders to control his Pd performance patches [26].

There is a conference that is dedicated to this specific field, the New Interfaces for
Musical Expression (NIME) [27] conference, that has been running since 2000.

 The [hid] Toolkit for Pd
Hans-Christoph Steiner

Interactive Telecommunications Program. Fall 2004 21

This conference is focused on research and practice related to building and
designing new musical instruments of all kinds. Almost all of the instruments
presented at this conference are built upon some computing processing.
Besides the NIME conference, there are many people creating and playing their
own instruments. Outside of the academic setting, there are many musicians
who use a laptop as their primary instrument, hooking up MIDI control surfaces,
HIDs, or even custom electronics to laptops in order to control sound. There
are organized groups around the world where people who build their own
instruments met to play together and share knowledge. There are numerous
examples in many parts of the world: Share [28] and FryLab [29] in New York; Pd
Stammtisch in Vienna; Prutal Druth [30] in Berlin; and dorkbot [31] in many cities
throughout the world.

 A new model of instrument design is emerging, shifting away from instruments
designed for a broad user base, such as the Theremin, the MIDI keyboard the
vast majority of traditional instruments. Instead many instrument builders are
using systems of building blocks that allow the individual musician to create their
own instrument relatively easily. This also contributes to a shift in the idea of
musical instruments as a device for playing a wide range of pieces. Individual
musicians can create their own instrument tailored to their performance goals, or
even tailor an instrument to a specific piece or performance. One great
advantage of the old model of instrument design is that musicians can develop
and share a body of knowledge about how to play that instrument. This is
something that has been severely lacking in the world of new interfaces for
musical expression: it is rare for anyone to achieve virtuosity on these new
instruments, even among the designers themselves. Using standard HIDs allows
people to build a shared body of technique without sacrificing the ability to
specifically tailor the instrument via the design of the mapping and the output.

My personal experience with designing new interfaces with musical expression
started with my college Senior Project, JoyStickMusicMachine [32]. It is a program
for taking the data from joysticks and mapping it to synthesis objects from the
NeXTSTEP MusicKit [33]. The key motivation was to be able to control
computer synthesis in realtime in order to break out of the
keyboard/mouse/monitor interaction typical of computer music of the time. I
followed on this idea with StickMusic [34], developing a specific instrument rather
than a toolkit like JoyStickMusicMachine and the [hid] toolkit. StickMusic was
creating using a force-feedback joystick and mouse, and was programmed in Pd.
My experiences creating and performing with StickMusic lead directly to the
creation of the [hid] toolkit.

First of all, I had to seek out and learn many different objects in order to use and
experiment with different HIDs. These objects were usually written for one
platform, so I could not run it on available computers, instead I always had to lug
my PC along. Furthermore, it was quite difficult to share this patch with other
interested musicians because of the details of setting it up and the technical

 The [hid] Toolkit for Pd
Hans-Christoph Steiner

Interactive Telecommunications Program. Fall 2004 22

requirements of getting it running. Through this experience, it became obvious
that a unified toolkit was needed to address these issues.

An array of existing computer music platforms already allow for HID input,
including Pd. There are numerous examples of existing software for using HIDs
within music software. Within Max/MSP, a number of objects exist for getting
data from HIDs such as [hi], [hidin] [35], [MouseState], [Insprock], [Wacom], and
[MTCcentroid]. Each of these objects has a different interface, so it is necessary
to learn each object to use each device. The Max/MSP object [hi] is a good
example for coherent integration because it provides a single interface to many
different kinds of HIDs. Plus [hi]'s menu system makes things quite easy to
setup. SuperCollider [4] provides very low level access to the Mac OS X HID
Manager, following its interface directly. This allows for great flexibility, but is a
hinderance to both rapid prototyping and novices just starting out. Pd has a
number of objects and patches for using HIDs such as [MouseState],
[linuxmouse], [linuxevent], [joystick], the Gem HID objects, kaos tools, and
P5midiPD [36]. But, like Max/MSP, they all have different interfaces, so the user
must learn different objects to use different HIDs. Other computer music
environments such as Csound [37] do not provide as broad access to HIDs as Pd
or Max/MSP.

There have been a couple of attempts at building frameworks for creating
mappings for musical instruments. Two notable packages come from IRCAM.
"MnM is a set of Max/MSP externals based on FTM providing a unified
framework for various techniques of classification, recognition and mapping for
motion capture data, sound and music." [38] An earlier attempt from IRCAM is
the ESCHER toolkit for jMax [39] which is a set of objects to address various
problems of mapping. In terms of haptic feedback, Pd is currently the only
widely available computer music environment known to the author that has the
ability to control haptic feedback. Pd has two means of using haptic feedback
devices: the ff lib for force feedback joysticks, and [ifeel] for haptic iFeel mice.

 The [hid] Toolkit for Pd
Hans-Christoph Steiner

Interactive Telecommunications Program. Fall 2004 23

6. Prototype Design

Intended Audience

The intended audience for the [hid] toolkit ranges from novices to advanced
users, from no programming experience and limited digital media experience, to
in depth technical knowledge. The design was focuses on the tools necessary
for advanced users to do rapid prototyping, with the belief that a well organized
rapid prototyping system would also be relatively easy for beginners to learn.

Prior Work

My work designing computer music instruments started with
JoyStickMusicMachine. Through the process of designing and implementing it, I
learned a number of things about how to architect a flexible framework for
building instruments using HIDs. First off, JoyStickMusicMachine was limited to
only joysticks, it was not possible to use other kinds of HIDs. The mapping was
done using pull-down menus in Windows to connect objects together. This
method mapping was quite limiting because it did not allow for much processing
to happen to the input data before being mapped to the synthesis objects.

The next project that I worked on that is directly related to the [hid] toolkit was the
StickMusic instrument that I built in Pd. In StickMusic, I explored using haptic HIDs
as controllers for real-time performance. Working in Pd allowed me huge
flexibility in mapping and output, and I took advantage of this to play with ideas
for mapping to the output and the haptic feedback. In order to get raw access to
the HIDs I chose (a Saitek force-feedback joystick and a Logitech iFeel haptic
mouse), I wrote the [linuxevent], [linuxmouse], [ifeel] objects for Pd. My
experience with StickMusic directed my design of the event scheme and the [hid]
object, as well as the mapping objects.

Event Polling

The polling of the input events was a key consideration in the design of the [hid]
object, since low latency is crucial to a playable instrument. Much effort was
made to reduce latency. Also, the input event polling is designed to be flexible
so that it can be tailored to specific situations. There are two methods of polling
available: polling automatically at regular intervals and manually, one chunk at a
time. The interval time for automatic polling is easily settable from 1ms or above.

Event Naming Scheme

The overall scheme for the [hid] toolkit was based on the Linux input event
scheme for a number of reasons, but it has some disadvantages, so the final
[hid] toolkit scheme is a modified version of the Linux scheme. The Linux
scheme has some aspects of it that are too specific, making it hard to abstract,

 The [hid] Toolkit for Pd
Hans-Christoph Steiner

Interactive Telecommunications Program. Fall 2004 24

i.e. button names for each device type, rather than just button numbers. While
some parts of the scheme seem redundant, such as a "rel" event type for relative
axes, with event codes for the relative axes, "rel_x", "rel_y" also labeled as
relative. This redundancy provides more flexibility while directly reflecting the
data as delivered from the operating system.

While creating StickMusic, I ran into many things that made the process quite
frustrating. One example is having to look up the numeric code to remember
what a given HID element was. These frustrations directed my design of the
[hid] toolkit. I decided to use symbolic names for the elements rather than
numbers, because usability was a key design concern, and most people find
symbolic labels easier to remember than numeric labels. While there are some
obvious disadvantages to symbolic labels in this context, such as increased CPU
usage, none were severe enough to force the need for numeric labels.

It was also important to carefully devise the symbols themselves, making sure
that they represented the elements well, and built upon existing schemes.
Designing the button scheme highlighted this issue. MacOS X HID Manager [8]
simply numbers the buttons, Microsoft DirectInput [9] works similarly since both
are based on the USB HID specifications [7][40]. The Linux input event system
[10] uses button names, like btn_left, btn_middle (mice); btn_trigger, btn_base
(joysticks); btn_a, btn_select (gamepads); btn_tool_pen, btn_stylus (tablets);
with a different naming scheme for each device type.
One key advantage of the button numbering scheme is that it allows buttons on
one device to work in patches written for other devices. A patch written for a
mouse could be triggered by the buttons of a joystick, tablet, etc. A minor
disadvantage is that the user has to test the device to find the number scheme,
rather than reading the label ("btn_0" vs. "btn_trigger").

Data Range

A common data format is essential in order to have the input, mapping, and
feedback objects interoperate with each other. Otherwise, the instrument
designer would have to have to think about converting the data ranges with each
step. Even though the MIDI range of 0-127 is a loose standard in Pd, the [hid]
toolkit uses the input/output range of 0-1. The computer audio standard is 0/1
(amp, pan, etc.), as well as the parameters for the Gem graphical environment for
Pd. Also, 0-1 is much easier to convert to any other range. Using 0-1 for axes
makes the data format the same across all of the HID elements as well: axes,
buttons, and pseudo-axes all output data in the range 0-1. This opens up new
possibilities for unorthodox mappings which might prove interesting.

Mapping

A number of mapping objects were created for this project, some are designed to
work within the [hid] toolkit, while others are more general purpose. Objects

 The [hid] Toolkit for Pd
Hans-Christoph Steiner

Interactive Telecommunications Program. Fall 2004 25

such as [autoscale], [buttongate] and [keygate] can be used in any context.
Objects that are designed to work within the toolkit have been named with a
prefix "hid_" to make this clear. Objects such as [hid_cube], [hid_log], and
[hid_average] all expect an input between 0 and 1, and their output is scaled to
be within 0 and 1. This allows them to interoperate with all of the toolkit objects,
but could make them less useful for general purpose applications.

Haptic Feedback

The ff library for Pd provided a number of objects for controlling haptic feedback
effects in HIDs. Each of these objects sent the control messages directly to the
device. To unify things and to keep as much as possible in the Pd realm, I chose
to create haptic feedback effect objects that generated the control messages. In
keeping with the rest of the [hid] toolkit, they were implemented them in Pd.
These control messages are then sent to the [hid] object, which sends the
messages to the device. Unless there was a strong reason to do otherwise, the
haptic effect objects followed the interface of the ff objects.

 The [hid] Toolkit for Pd
Hans-Christoph Steiner

Interactive Telecommunications Program. Fall 2004 26

7. Implementation of the Prototype

For the prototype, the bulk of the functionality is implemented on one platform,
GNU/Linux. Then, to make sure that the event model that I designed for the [hid]
object will work across platforms, I have a basic implementation working on
MacOS X. I also researched the Microsoft DirectInput and USB HID and USB PID
event models to make sure that the [hid] object's event model will be able to
represent the range of data available.

Only the core [hid] objects ([hid], [linuxhid], [darwinhid]) are written in C, the rest
of the objects are written in Pd itself. For these objects, it was necessary to
program them in C since both the core of Pd and the MacOS X HID Manager are
written in C. My intention was to implement as much of the [hid] toolkit in Pd as
possible for a number of reasons. I think as a general rule, Pd objects should be
implemented in Pd itself since it is a full-fledged programming environment, not
merely an high-level application. Since programming in Pd is a different mindset
that programming in procedural languages like C, I think that objects written in Pd
will work better in Pd. Patches written in Pd are work across platforms (unless
certain objects are used which are not cross-platform). Any user can the easily
view the source of objects written in Pd, learn programming methods from them
by example, and even use them as the basis for their own custom objects.

[linuxevent] and [ifeel] objects that I had previously written ended up being an
easy prototyping platform, and I built the [hid] object starting with the [linuxevent]
code. Even though the code changed a lot from the original [linuxevent], it
proved valuable to start with working program, allowing me to test each step as it
was implemented. My [ifeel] object and Gerard van Dongen's ff [41] library of
objects provided prototypes for the haptic feedback implementation. The way
that input and haptic feedback events are represented is quite different on each
of the platforms. Therefore, in order to make a unified representation of events,
convoluted and laborious code needs to be written. This has been implemented
for the most common devices, but many remain to be implemented. Fortunately,
this code can be written bit by bit, as the need arises, while the already
implemented devices will be fully functional.

While I did the coding myself, there were a number of important contributions
from others. The Pd lists [42] have been an essential resource for information,
ideas, and advice. Ideas for mapping objects from Cyrille Henry and La
Kitchen's set of mapping objects for sensor data, as well as Jamie Allen's
mapping demo patch for Max/MSP. The Pd community has been my main pool
of alpha testers, but some additional testing done here at ITP, using multiple
different computers, and subjecting willing students to testing sessions.

 The [hid] Toolkit for Pd
Hans-Christoph Steiner

Interactive Telecommunications Program. Fall 2004 27

8. User Testing

While there was no formal user testing performed for this thesis, much informal
user testing was done, and influenced the design of aspects of the [hid] toolkit.
The two forums that were utilized for this informal user testing were the Pd
mailing lists and members of the ITP/NYU community. I also created a number
of test patches in order to test ideas and their implementation. The user testing
of this project started with my first attempt at a HID object for Pd, [linuxevent]. I
wrote this object to provide access to all kinds of HID data to Linux Pd users.
That object has been released for about one and half years. Numerous users
have used [linuxevent] and reported many different bugs, as well as various
problems and comments. The experiences of many users influenced the design
of the [hid] toolkit and helped to outline the key issues preventing the level of
interoperability necessary to enable instrument sharing.

The Pd mailing lists are the central forum for the Pd community. They provide a
space to discuss all things related to Pd, from event announcements, new
objects, coding ideas, bugs, problems etc. Many people post examples of their
work, both to receive criticism as well as to distribute them to a broader
audience. For this project, I took advantage of the Pd lists for informal user
testing, bug testing, and discussion of concepts. Two types of users from ITP
participated in the informal user testing: students with experience designing their
own computer music instruments, and students with established skills using
specific HIDs. Through interviews and demonstrations, I gathered information
about existing software, HID techniques, and aspects of the [hid] toolkit. I also
built a number of patched based on a number of different HIDs (mouse, joystick,
tablet, keyboard) to test both the input objects and the mapping objects.

Following the open source tenet of "release early, release often", I made five
releases to the Pd lists over the semester, starting with a rudimentary
implementation. Through this process I received many bug reports which
provided useful data for debugging. Also, the people who tested it confirmed that
the software was working on different platforms, with different setups, and using
different brands and models of HIDs. One key idea that came from user testing
is to use symbolic names in the event naming scheme instead of numbers. For
many users, it was necessary to constantly use lookup tables in order to
remember which number was representing which HID element. Using symbolic
names greatly reduced the number of lookups for some users while not
increasing it for others.

The user testing process was helpful in determining that the button names should
be based on sequential numbers ("btn_0", "btn_1", "btn_2", etc.) rather than
descriptive names ("btn_left", "btn_trigger", etc.). While this may seem in
opposition to the previous point, the meaning of most of the descriptive names
was not apparent to many users and oftentimes were based on numbering

 The [hid] Toolkit for Pd
Hans-Christoph Steiner

Interactive Telecommunications Program. Fall 2004 28

schemes anyhow. Some examples of such names are: "btn_tl2" on a gamepad;
"btn_base2" through "btn_base6" for a joystick; "btn_forward" and "btn_task" for
a mouse. Also, the mouse button often called "btn_left" is not always the
leftmost button on a mouse.

User testing also proved that the automatic range scaling of the high level input
objects ([mouse], [joystick], etc.) allowed interoperability between devices of the
same type, joysticks for example, even if they provided a drastically different
range of data. Two joysticks were consistently used throughout the building of
the [hid] toolkit, one with a range of 0-127 and another with a range of 0-4095.
Both of these joysticks could be used with the same patch, with the same joystick
position producing the same sound. The difference in data range was instead
perceived as a difference in resolution of the control rather than a difference in
the sound generated.

 The [hid] Toolkit for Pd
Hans-Christoph Steiner

Interactive Telecommunications Program. Fall 2004 29

9. Conclusion

The [hid] toolkit provides a common platform for using HIDs within Pd with a
unified framework for creating instruments from the HID data. A couple intrepid
Pd users have already designed their own instruments using the [hid] toolkit.
Included joystick- and mouse-based instruments work on numerous computers
with different OS's and distinct brands and models of HIDs. In addition to the
objects that are already working, this framework can be applied to a broad range
of devices out for developing a complete platform for input, mapping, and
feedback. Early user testing has confirmed that some key aspects of the [hid]
toolkit make instrument design easier, both for novices and for more experienced
users who want to build rapid prototypes. The toolkit also enables sharing of
instrument patches. The unified, cross-platform objects for input, mapping and
feedback work in a consistent manner. The high-level objects allow an
instrument patch to work with HIDs of the same device type, joystick for example,
but with differing specifications. Hopefully the [hid] toolkit will aid in the
development a standard body of technique for HIDs, bringing virtuosity to the
field of new interfaces for musical expression.

10. Future Work

Mapping

In terms of mapping, there many possibilities not addressed in the current
version of the [hid] toolkit. Most of the current mapping objects cover relatively
simple concepts. More complicated ideas like one-to-many and many-to-one
mapping should be explored in the form of high-level objects. While these
objects would be somewhat limited, they would provide a quick method to test
ideas and an accessible way for novices to experiment with more complex
mappings. Physical modeling offers a lot of potential over simple averaging and
curve-mapping methods for processing the input data. The pmpd [43] library
provides the basic building blocks for creating physical models within Pd. With
pmpd it is possible to model physical interactions from the real world. When
using a bowing action with the mouse, for example, a physical model of a violin
bow on a string might prove quite appropriate, especially when combined with
haptic feedback. This simulation of the violin bow action could be encapsulated
in an object, expanding the possibilities of [hid] toolkit.

MIDI Devices and Sensors

The [hid] toolkit establishes a common framework for data from HIDs and
general mapping operations. This framework should be extended to cover other
methods used for getting gestural input. Many people who are used to working
with electronics prefer to use MIDI controllers. Pd is fully capable of handling

 The [hid] Toolkit for Pd
Hans-Christoph Steiner

Interactive Telecommunications Program. Fall 2004 30

MIDI, and given objects that convert the data from MIDI interfaces, users could
use the [hid] toolkit mapping framework with MIDI devices. High-level objects for
these MIDI devices following the model of [mouse], [joystick], etc. from the [hid]
toolkit. By having a common interface, users could apply the same knowledge of
how to use HID objects with [hid] toolkit to utilize MIDI input devices. Many
people are also building instruments using sensors and other electronics. There
is currently a multitude of methods of getting the data from the micro-controllers
and sensor boxes, much like the multitude of interfaces and objects available for
getting data from HIDs. Nothing that prevents these devices from fitting into the
framework laid out with the [hid] toolkit. Using the same automatic calibration
used in the high-level HID objects ([mouse], [tablet], [joystick], etc.), sensor data
could also be representing using the range of 0-1. Having all of these means of
getting input together in one coherent framework would allow instrument
designers to seamlessly mix any number of these methods comparatively easily.

Visual Instruments

Many sound programming environments such as Pd have been extended to
handle many different media, such as video, computer graphics, or even
robotics. Gestural control could also make for engaging performance using any
or all of these media. Instruments need not only be for music, visual instruments,
for example, remain largely unexplored. Computer synthesis vastly expands the
possibilities here, and performers are starting to create visual instruments,
building on old ideas like the Clavecin Oculare. Live video performance is
already common, and video performers are starting to use physical controllers,
but almost always these controllers follow the video mixer paradigm. Just like
the laptop performer stuck in the keyboard/mouse/monitor interaction, the wide
range of human gesture is not well exploited when using video mixers.

Visual Feedback

Modern computer graphics capabilities can create complex visuals in real-time.
Human vision is capable of processing a huge amount of data. Therefore, the
possibilities of visual feedback are vast. Computer-based instruments could
provide richer visual feedback than any traditional instrument. Very few new
interfaces for musical expression take advantage of this, and they generally
provide far less visual feedback than a traditional instrument. Explorations of
visual feedback are becoming common, often in the context of audio-visual
performance [44], [45]. chdh [46] is an excellent example of this fusion. The
music and visuals are tightly linked, and the graphical manipulations are
obviously linked to the sounds being produced. The audience as well as the
performer can follow this visual feedback, providing a new expression of
Wagner's idea of Gesamtkunstwerk. Currently, a strong knowledge of graphics is
necessary in order to provide rich visual feedback. High-level objects for creating
visual feedback would open up these possibilities to a wider range of people, and
fit well into [hid] toolkit scheme.

 The [hid] Toolkit for Pd
Hans-Christoph Steiner

Interactive Telecommunications Program. Fall 2004 31

11. Appendices

a) Formatting Conventions

There are two conventions used here which are derived from the Pd mailing lists:

[object]

This represents a _Pd object. If there is no reference after it, it is considered a
part of the main distributions.

[message(

This represents a Pd message. [message('s are generally discussed in relation to
[object]'s that respond to the message.

b) Glossary

gamepad: a standard hardware device used to control video games that is usually
held with two hands and consists of buttons and joysticks

gamer: a person who plays video games seriously

haptic: related to the sense of touch at the skin level and forces to the muscles
and joints

HID: Human Interface Devices, such as a joystick, mouse, keyboard, gamepad,
tablet, etc.

mapping: processing input data to control output and feedback

MIDI: Musical Instrument Digital Interface, an industry-standard interface used
on electronic musical keyboards and PCs for computer control of musical
instruments and devices

patch: a program written in a "patcher" environment like Pd or Max/MSP

Pd: Pure Data, an open source, multimedia software environment [6]

tablet: a hardware device used with a pen-like stylus used to control cursor
movement

c) patches built with the [hid] toolkit

 The [hid] Toolkit for Pd
Hans-Christoph Steiner

Interactive Telecommunications Program. Fall 2004 32

Figure 11-1: a simple joystick-based instrument patch

 The [hid] Toolkit for Pd
Hans-Christoph Steiner

Interactive Telecommunications Program. Fall 2004 33

Figure 11-2: some curve objects for mapping

 The [hid] Toolkit for Pd
Hans-Christoph Steiner

Interactive Telecommunications Program. Fall 2004 34

12. Bibliography

[1] B. Bongers, "The Use of Active Tactile and Force Feedback in Timbre
Controlling Electronic Instruments", Proceedings, International Computer Music
Conference (ICMC 1993), 1993.

[2] Native Instruments Reaktor,
 http://www.nativeinstruments.de/index.php?reaktor_us

[3] Ableton Live, http://www.ableton.com/

[4] SuperCollider, http://www.audiosynth.com/

[5] Cycling '74 Max/MSP, http://www.cycling74.com/

[6] M. Puckette, "Pure Data: another integrated computer music environment",
Proceedings, International Computer Music Conference (ICMC 1996), 1996, pp. 269-
272. also: http://puredata.org

[7] Universal Serial Bus (USB): Device Class Definition for Human Interface Devices
(HID), http://www.usb.org/developers/devclass_docs/HID1_11.pdf

[8] Apple Mac OS X HID Manager,
http://developer.apple.com/documentation/DeviceDrivers/Conceptual/IOKitFunda
mentals/Families_Ref/chapter_11_section_7.html#//apple_ref/doc/uid/TP000002
1/BABFEIAC

[9] Microsoft DirectInput Overview, http://msdn.microsoft.com/library/en-
us/dninput/html/diov.asp

[10] Linux Input Drivers, http://linuxconsole.sourceforge.net/input/input.html

[11] A. Hunt, M. Wanderley, and M. Paradis, "The importance of parameter
mapping in electronic instrument design", Proceedings of the International
Conference on New Interfaces for Musical Expression (NIME-02), 2002.

[12] J. B. Rovan, M. Wanderley, S. Dubnov, and P. Depalle, "Instrumental
Gestural Mapping Strategies as Expressivity Determinants in Computer Music
Performance", KANSEI - The Technology of Emotion, AIMI International
Workshop, Genova, 2000. http://citeseer.ist.psu.edu/65256.html

[13] R. Vertegaal, "An evaluation of input devices for timbre space navigation",
MPhil. dissertation, Department of computing, University of Bradford, 1994.
http://citeseer.ist.psu.edu/vertegaal94evaluation.html

 The [hid] Toolkit for Pd
Hans-Christoph Steiner

Interactive Telecommunications Program. Fall 2004 35

[14] A. Cont, T. Coduys, and C. Henry, "Real-time Gesture Mapping in Pd
Environment using Neural Networks", Proceedings of the International Conference on
New Interfaces for Musical Expression (NIME-04), 2004
http://www.suac.net/NIME/NIME04/paper/NIME04_1C04.pdf

[15] M. Puckette and J. Settel "Nonobvious Roles for Electronics in Performance
Enhancement." Proceedings, International Computer Music Conference (ICMC 1993),
1993. http://crca.ucsd.edu/~msp/Publications/icmc93.ps

[16] K. F. Hansen, "Turntable Music", Musikklidenskapelig Årbok 2000. Dep. of
music, the Norwegian University of Science and Technology, Trondheim 2000,
145-160 http://www.speech.kth.se/~hansen/turntablemusic.pdf

[17] ExtremeTech, "Review: RTR-720 Whoop-Ass Mouse",
http://www.extremetech.com/article2/0,1558,1203359,00.asp

[18] Apple Motion gestures, http://www.apple.com/motion/advanced.html

[19] Mozilla Firefox gestures,
https://update.mozilla.org/extensions/showlist.php?category=Mouse%20Gestures

[20] Cocoa Gestures, http://www.bitart.com/CocoaGestures.html

[21] L. Spiegel, Music Mouse, http://retiary.org/ls/programs.html

[22] Leon Gruenbaum's Samchillian Tip Tip Tip Cheeepeeeee,
http://www.samchillian.com/

[23] Luke Dubois, http://www.cycling74.com/community/lukedubois.html

[24] L. Kessous and D. Arfib, "Bimanuality in Alternate Musical Instruments,"
Proceedings of the International Conference on New Interfaces for Musical Expression
(NIME-03), 2003. http://citeseer.ist.psu.edu/kessous03bimanuality.html

[25] Gerard Van Dongen, http://www.xs4all.nl/~gml/

[26] Nick Fells, http://www.gla.ac.uk/departments/music/staff/nick/

[27] New Interfaces for Musical Expression Conference, http://www.nime.org

[28] Share @ Openair, http://www.share.dj

[29] FryLab, http://www.frylab.info

[30] Prutal Druth, http://pd.iem.at/pdwiki/index.php?PrutalDruth

 The [hid] Toolkit for Pd
Hans-Christoph Steiner

Interactive Telecommunications Program. Fall 2004 36

[31] dorkbot, http://dorkbot.org

[32] H.-C. Steiner, JoyStickMusicMachine, Senior Project, Bard College, 1996.
http://at.or.at/hans/misc/bard/seniorproject/

[33] NeXTSTEP MusicKit, http://www.musickit.org

[34] H.-C. Steiner, "StickMusic: Using haptic feedback with a phase vocoder",
Proceedings of the International Conference on New Interfaces for Musical Expression
(NIME-04), 2004. http://citeseer.ist.psu.edu/699201.html

[35] [hidin] Max/MSP object, http://www.akustische-kunst.org/maxmsp/dev/

[36] P5 MIDI patches for Pd,
http://www.11h11.com/hugodini/projects/p5midipd.htm

[37] Csound, http://csounds.com/

[38] MnM (Music is Not Mapping), http://recherche.ircam.fr/equipes/temps-
reel/maxmsp/mnm.html

[39] M. Wanderley, N. Schnell, and J. Rovan, "ESCHER-modeling and
performing composed instruments in real-time", IEEE Systems, Man, and
Cybernetics, 1998.
http://intl.ieeexplore.ieee.org/xpl/abs_free.jsp?arNumber=727836

[40] Universal Serial Bus (USB): Device Class Definition for Physical Interface
Devices (PID), http://www.usb.org/developers/devclass_docs/pid1_01.pdf

[41] G. van Dongen, ff library, http://www.xs4all.nl/~gml/software.html

[42] Pd mailing lists, http://puredata.org/community/lists

[43] C. Henry, "pmpd : Physical modelling for Pure Data", Proceedings,
International Computer Music Conference (ICMC 2004), 2004, 37-41.

[44] S. Jorda, "Interactive Music Systems For Everyone: Exploring Visual
Feedback As A Way For Creating More Intuitive, Efficient And Learnable
Instruments", Proceedings of the Stockholm Music Acoustics Conference (SMAC 03),
2003. http://citeseer.ist.psu.edu/580866.html

[45] S. Jorda, "Sonigraphical Instruments: From FMOL to the reacTable",
Proceedings of the International Conference on New Interfaces for Musical Expression
(NIME-03), 2003. http://citeseer.ist.psu.edu/jorda03sonigraphical.html

[46] chdh (Cyrille and Damien Henry), http://www.chdh.net/

 The [hid] Toolkit for Pd
Hans-Christoph Steiner

Interactive Telecommunications Program. Fall 2004 37

[47] SensAble Phantom,
http://www.sensable.com/products/phantom_ghost/phantom.asp

PICNETUSB, http://www.alecmcnamara.freeserve.co.uk/picnetusb/

D. Wessel, M. Wright, and J. Schott, "Intimate Musical Control of Computers with
a Variety of Controllers and Gesture Mapping Metaphors", Proceedings of the
International Conference on New Interfaces for Musical Expression (NIME-02), 2002
http://www.cnmat.berkeley.edu/Research/NIME2002/NIME02WesselWrightSchot
tDm.html

N. Orio, N. Schnell, and M. Wanderley, "Input Devices for Musical Expression:
Borrowing Tools from HCI" New Interfaces for Musical Expression Workshop (NIME-
01) at ACM CHI'01, 2001. http://citeseer.ist.psu.edu/orio01input.html

A. Hunt, M. Wanderley, and M. Paradis, "The Importance of Parameter Mapping
in Electronic Instrument Design", Proceedings of the International Conference on
New Interfaces for Musical Expression (NIME-02), 2002.
http://citeseer.ist.psu.edu/hunt02importance.html

D. Van Nort, M. Wanderley, and Philippe Depalle, "On the Choice of Mappings
Based on Geometric Properties", Proceedings of the International Conference on
New Interfaces for Musical Expression (NIME-04), 2004.
http://citeseer.ist.psu.edu/699416.html

J. Benjamin, Gestural Music Interface, http://www.acm.uiuc.edu/sigchi/gmi/

